IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 17, NO. 8, AUGUST 2015

1187

Geolocalized Modeling for Dish Recognition
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Abstract—Food-related photos have become increasingly
popular, due to social networks, food recommendations, and
dietary assessment systems. Reliable annotation is essential in
those systems, but unconstrained automatic food recognition is
still not accurate enough. Most works focus on exploiting only
the visual content while ignoring the context. To address this
limitation, in this paper we explore leveraging geolocation and
external information about restaurants to simplify the
classification problem. We propose a framework incorporating
discriminative classification in geolocalized settings and introduce
the concept of geolocalized models, which, in our scenario, are
trained locally at each restaurant location. In particular, we
propose two strategies to implement this framework: geolocalized
voting and combinations of bundled classifiers. Both models show
promising performance, and the later is particularly efficient
and scalable. We collected a restaurant-oriented food dataset
with food images, dish tags, and restaurant-level information,
such as the menu and geolocation. Experiments on this dataset
show that exploiting geolocation improves around 30% the
recognition performance, and geolocalized models contribute
with an additional 3-8% absolute gain, while they can be trained
up to five times faster.

Index Terms—Food recognition, geolocation, image tagging,
mobile applications.

I. INTRODUCTION

ATING is essential for human life, both from personal

and socio-cultural perspectives. Thus, food is connected
to many aspects and activities in daily life, including health,
culture, leisure and social events. For instance, one new trend
is sharing dining-out experiences on photo-enabled social
networks. In fact, people are increasingly interested in dis-
covering and sharing new cuisines, and knowing more about
different aspects of the food they consume. Another popular
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Fig. 1. Examples illustrating similarities and variabilities for two different dish
classes.

application is keeping a personal log of daily meals and food
intake.

Food photos are popular, but in general users annotate
them poorly, either with rather useless tags (e.g., “today’s
lunch”, “delicious”), not accurate or generic tags (e.g. “Italian
food”, “yellow rice”) and even wrong tags. In fact, this is
not surprising, as accurate photo annotation requires specific
domain knowledge and manual textual input is time-consuming
and prone to typos. Thus, automatic annotation from a photo
taken with the smartphone is much more convenient for the
user, and automatic tags are more accurate and useful for
retrieval applications. Reliable automatic food recognition can
enable countless functionalities in these systems. Examples
include automatic photo tagging, image-based retrieval (e.g.
recipe, dietary properties), recommendation (e.g. food, recipe,
restaurant).

Many works on food recognition have been proposed in
recent years based on different visual representations [1]-[10],
although most of them are limited to a few food classes in
controlled settings. Accurate food recognition from only visual
information is still a challenge. In contrast to objects, food items
are highly deformable and with high intra-class variability, e.g.
different cooking styles and seasonings will lead to different
appearances of the same food. Moreover, different foods share
many ingredients and often differences between some food
classes are almost imperceptible (see Fig. 1).

In order to address complex recognition problems, humans
leverage prior and contextual knowledge. From the perspec-
tive of neuroscience, cells in superior colliculus can associate
information from multiple sensory modalities (multisensory
integration [11]) and make it more useful than that from one
singular modality. Similarly, automatic systems also incor-
porate multiple context and external knowledge to solve a
simpler problem. For instance, a tagging system can exploit
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internal and external context, by exploiting the personal tag-
ging history and other users’ tags in similar photos [12].
Personal interests and social circles are also helpful contexts
[13]. Mobile phones can capture rich contextual information,
in particular they can estimate their geographic location (i.e.
geolocation) from GPS and mobile networks via their location
services. The paradigmatic application is touristic or urban
landmark recognition [14]-[16] with smartphones. Typically,
using image retrieval techniques, the most similar images are
retrieved, but only considering images whose geolocation is
in geographic neighborhood. Classifiers can be used instead
and the candidate classes are limited to those a few candi-
dates based on the geolocation (i.e. shortlist approach [14]),
although the nature of landmarks and buildings (rigid objects,
and intrinsically invariant) usually makes retrieval-based ap-
proaches with geometric verification more effective. The ad-
vantage of exploiting contextual information is twofold: sim-
plifies the problem making it easier to solve, and reduces the
computational complexity.

Similarly, we could exploit context for food recognition. In
particular, in this paper we focus on a particular yet common
scenario: dish recognition in restaurants (we use the term dish to
empbhasize that it is related to restaurants, and also more specific
than the term food). This scenario has contextual information we
can exploit, since the ingredients, cooking style and presentation
of dishes and which dishes (i.e. menu) are very restaurant-spe-
cific, and restaurants are also naturally linked to a geolocation.
Therefore, we propose exploiting information about the geo-
graphic location of the photo and about the dishes in the menu
of the restaurants near that location, including user contributed
images of those dishes (crawled from online review websites,
such as Yelp or Dianping).

Due to the intrinsic characteristics of food images, we
prefer using explicit discriminative classification, rather than
a retrieval-based approach (more suitable for landmarks).
We first adapt the shortlist approach to our scenario. Using a
global classifier trained over all the dish classes, during test we
geolocalize the problem by finding the restaurants within the
geographic neighborhood of the test image and selecting only
the dishes in their menus as potential classes for the test image.
As we will see later, this approach has some limitations, related
with the mismatch between the test settings (query-dependent)
and the training settings (global), that is, models learned for the
whole database are used to discriminate over a query-dependent
subset of classes.

We address the test-training mismatch problem by intro-
ducing the concepts of geolocalized models and the related
geolocalized training and model combination. By geolocalizing
models the complexity of each model is lower, and the training
classes and training data are more similar to those found for
a particular query image. Then, for a particular query image,
geolocalized models of candidate restaurants are combined.
For dish recognition in restaurants, dish models are localized
in the corresponding restaurants, and trained to discriminate
between the dish classes in the menus of the same and neigh-
boring restaurants. We describe two specific strategies to
implement this framework and analyze their characteristics and
performance. Experiments show that these strategies not only
improve the recognition accuracy but also the efficiency.
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In summary, motivated by the problem of dish recognition in
restaurants, the main contributions of this paper are as follows.

* We analyze the problem of discriminative classification in
geolocalized settings, and propose geolocalized modeling as an
effective framework.

* In addition to an adaptation of the shortlist approach, we
propose two strategies to implement geolocalized models:
geolocalized voting and combinations of bundled classifiers
(CBO).

* We collected a specific restaurant-oriented food dataset,
including restaurant-specific information such as menus and
geolocation.

The rest of this paper is organized as follows. Section II re-
views the related work. Sections III and IV introduce the pro-
posed framework and the two implementation strategies. Exper-
iments and conclusions are presented in Sections V and VI.

II. RELATED WORK

A. Food Recognition

Previous works on dish recognition are mainly based on ana-
lyzing the visual appearance. Some works address food recog-
nition using conventional visual features trying to capture the
global appearance of the food. Joutou and Yanai [6] proposed
an automatic food image recognition system based on multiple
kernel learning (MKL), which integrates several kinds of image
features (e.g. color, texture, SIFT) learning an optimal linear
combination of feature-specific kernels. Hoashi et al. [7] ex-
tended the system proposed in [6] with more image features
and food classes. Maruyama et al. [8] improved the recogni-
tion accuracy by incrementally updating the classifier based on a
Bayesian network. Zong et al. [2] proposed to exploit the struc-
ture of the food object which is represented as the spatial distri-
bution of the local textural structures and encoded using shape
context. Kawano et al.[9] compute Fisher vectors over HOG
patches to develop a real-time mobile food recognition system.
Recently, they extended the system to 256 food categories [10].

Other works consider food as a certain combination of dif-
ferent components (ingredients). Yang et al. [1] proposed an
American fast food recognition system by using pairwise local
features, which effectively captures important shape character-
istics and spatial relationships between food ingredients. Di-
etcam [3] analyzes a meal by taking several images (or a short
video), estimating the volume of each food items and finally
estimating the caloric intake. The recognition accuracy is in-
creased through modeling food geometric locations and a joint
probability model. Zhang [17] proposed to classify plates of
food to the correct cuisine using attribute-based classification,
where the ingredients are considered attributes of a plate of food.
Kawano et al. [5] built an interactive real-time food recognition
system. First, the user locates the meal with a bounding box and
then each food item region is segmented with GrabCut [18]. A
color histogram and SURF-based bag-of-features are then ex-
tracted and fed into SVM classifiers. Finally, some works [19],
[4] focus on multiple dish recognition. In this work we focused
on close-up photos of dishes, which are also the common type
we find in social networks.

Most existing works in food recognition have been focused
only on content-based analysis, not considering any contextual
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information. In contrast, our work explores the potential of ge-
ographical context to improve the recognition accuracy.

B. Image Recognition Exploiting Geolocation

Previous works exploiting geographical information to help
visual recognition mainly target landmarks (e.g. the Eiffel
Tower) and location-specific concepts (e.g. lions in the forest).
Ji et al. [20] classify them into four groups: (1) geographical
location recognition, (2) landmark mining, (3) tourism recom-
mendation, and (4) 3D scene modeling and city navigation.
Yap et al. [14] have made a comparative study of mobile-based
landmark recognition, in which content classifiers are offline
trained and context is used to shortlist several candidate land-
marks, then content analysis is performed for recognition (for
convenience we refer to this approach as shortlist). Chen et al.
[21] score the images in database using a vocabulary tree trained
on SIFT descriptors, and geographically distant landmarks
are excluded using GPS coordinates associated with the query
image, then approximate nearest neighbors (ANN) is applied to
find the nearest feature vectors within the candidates. Yaegashi
and Yanai [22] exploited geotags for photo recognition by
including two types of geographical information: raw values of
latitude and longitude and visual features extracted from aerial
photos around the geotagged location. In [23], these two kinds
of features are combined using MKL. Zheng et al. [24] mined
and modeled worldwide landmarks by using agglomerative
hierarchical clustering on the geotag coordinates. More related
works can be found in recent surveys [25], [20].

Not only the geolocation can be used to recognize images, but
images themselves can be useful to estimate the geolocation. Li
et al. [26], estimate the unknown geolocation of an image by
searching visually similar images in a large set of geotagged
images.

To the best of our knowledge, geographical location has not
been exploited for food image recognition, and most geocon-
text-based image recognition works deal with outdoor photos
such as landmark or urban. This type of images, in contrast
to food images, are relatively invariant (apart from extrinsic
factors such as illumination, viewpoint, etc). Besides, most
methods are variants of retrieving similar images to the query
(perhaps with some nearest neighbors classification) after some
geocontext-based filtering to shortlist the candidate images.
However, these approaches may not work well on the more
deformable food images, especially when there are very few
images for each class, thus more discriminative methods are
necessary.

III. DISCRIMINATIVE CLASSIFICATION IN
GEOLOCALIZED SETTINGS

A. Dish Recognition in Restaurants

In contrast to generic food recognition, dish recognition in
restaurants emphasizes two elements. First, the problem is lo-
calized, that is, we assume the user (and consequently the photo)
is located inside a restaurant. Second, we use the more specific
term dish rather than food to emphasize the relation with the
menu of a restaurant. In general, accurate dish recognition is
very challenging, since the combined number of classes can be
very large. Variations in the ingredients and different cooking
and presentations used in different restaurants can cause a large
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visual variability for the same dish, while accidental similarity
between non-related dishes causes inter-class similarity (see
Fig. 1). And these problems become more significant in larger
datasets with more restaurants and dishes.

In food recognition the objective is to identify the class s of
an input image, represented by some visual descriptor x. This
is achieved using a visual classifier, that we represent as p(s|x).
For dish recognition in restaurants, in addition to the visual clas-
sifier, we have access to the menu of the restaurant and to the ge-
ographic location of both the restaurants and the image. Thus, a
query to the system is a pair @ = (¥4, x), where ¥, = (Ay, ¢4)
are the geographical coordinates (estimated by the location ser-
vices of the mobile device), with A, and ¢, denoting latitude
and longitude. Similarly, a restaurant k& is modeled as a pair
Ry, = (T, My,), representing its menu My, (i.e. the dish classes
found in that particular restaurant) and its geographic location
W = (Ag, ¢r). For simplicity we project the location onto a
local coordinate system (with origin at the average coordinates
of the dataset), and use local coordinates ¢y, = (ug,vy) for
the restaurant location, and ¢, = (u,, v,) for the query image.
The restaurant database contains K restaurants with a combined
total of D = IUf:1 M| dishes. The menu is represented as
My ={s1,...,sp,}, where s; is the i-th dish in the restaurant
menu My, with Dy, different dishes.

While dish recognition is a very complex problem, contextual
knowledge about menus and geolocations can be very helpful to
simplify the problem and boost recognition performance. How-
ever, the way this information is incorporated and the type of
models used can have a significant impact on both efficiency
and accuracy.

B. Naive Strategy: Shortlist Approach

The simplest way to improve the performance of a (global)
classifier by including geolocation is to use the query geoloca-
tion to reduce the candidate classes. The adaptation to the case
of dish recognition in restaurants is straightforward. The can-
didates are those dish classes in the menus of the restaurants
in the geographic neighborhood of the query. We refer to this
method as the shortlist approach [14]. Given the local coordi-
nates ¢, and the visual feature x, predicting the dish is equiv-
alent to finding the dish with maximum probability among the
candidates

s* = argmaxp (s|x)

s€Gy,

)

where the set of candidate restaurants H, and candidate dish
classes (7, for a query are obtained as

H, = H (pg,¢) = {k||lor —pqll <e.VE=1,...,K}
G, = U M,

kEH,

2

where ¢ is the maximum distance from the candidate restaurants
to the query image.

It is trivial to see that discriminating between fewer classes
makes the average accuracy to increase because the new
problem is simpler. Note that we do not adapt the classifier
to the query’s features, but to its context (e.g. geolocation).
Although useful, this naive strategy still uses a global model.
Thus, the model is not adapted to the test settings of each query,
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Fig. 2. Toy example using a global model in geolocalized settings: (a) restau-
rants in the dataset; (b) restaurants near the query image and candidate classes;
(c) training data; (d) geolocalized training data (i.e., only candidate classes);
(e) test data and decision regions for all the classes; and (f) test data and deci-
sion regions for the candidate classes.

only adapting the scores of the classifiers (or probabilities). We
illustrate the limitations of this strategy with a toy example.
We consider four restaurants R;, R;, Ry and R4 with two
dishes each, distributed geographically as shown in Fig. 2(a).
The training data of the different dishes are represented in
Fig. 2(c) in a two dimensional feature space. A multi-class
Support Vector Machine (SVM) is trained with this training
data. The decision regions and some test samples are shown in
Fig. 2(e). Now, let us consider a query image and its estimated
geolocation. Due to the error in the location, the device finds R»
and Hj3 as candidate restaurants, and thus reduces the potential
classes to four candidate classes [see Fig. 2(b)]. Classifying
into four classes is simpler than classifying into eight. We see
that after discarding some classes in this example the candidate
classes are relatively easy to separate. However, while the
global classifier can classify correctly most of the test samples,
there are still some misclassification and the decision regions
are more complex than necessary for this simple problem [see

Fig. 2(f)].

C. Test-Training Mismatch in Geolocalized Settings

The shortlist approach is an example of classification in ge-
olocalized settings, in which the classification process is modi-
fied by geolocation information at query time. The reason why
the global model in the toy example cannot discriminate prop-
erly between the candidate classes is because it has been trained
to discriminate between the original classes. We refer to this
problem as test-training mismatch, because classes and data in-
volved during training are different from the classes and data
involved during test after adapting the classifier to the query.
Even ignoring classifiers from classes that are not included in
the candidate set (i.e., shortlist) does not guarantee that the clas-
sifier will discriminate properly between the remaining classes,
since the remaining classifiers were also trained with negative
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Fig. 3. Different restaurant neighborhoods in the toy example: (a) training for
restaurant Ry ; (b) training for restaurant Rs; (c) decision regions for an optimal
geolocalized model (retrained only with the classes in the query neighborhood);
and (d) decision regions using CBC (see Section IV-B).

samples from the discarded classes. Thus, those negative sam-
ples from the discarded classes introduce certain training noise
and bias the models.

A better way would be adapting not only the classes to the
query, but also adapting the training data. Lazy classifiers not
requiring explicit training, such as £-NN, implicitly adapt the
training data when used in geolocalized settings. For this reason
they are very common in landmark recognition. However, dis-
criminative classifiers require explicit training. Adapting the
training data for each query implies that the model has to be
retrained for each query. As the problem settings (classes and
training data) depend on the particular geographic location of
the query image, the resulting classifier is optimal for that query.
The resulting classifier discriminates better the data, with more
robust decision regions [see Fig. 3(c)].

D. Geolocalized Modeling Framework

While being the optimal case, retraining models for each
query is not feasible in practice, due to the high training cost.
However, between this optimal but impractical case and the
less accurate global models, there are alternatives which can
exploit geolocalization during both training and test time. Thus,
we propose geolocalized modeling to address the test-training
mismatch problem, where models are trained to discriminate
only against those classes likely to be candidates simultane-
ously in the query.

The key difference with generic food or dish recognition is
that we are not interested in solving the complex problem of
modeling all types of dishes and their possible variations, but in
simpler problems where we need to discriminate between fewer
candidate classes given the geolocation and restaurant informa-
tion. Thus, while a generic dish classifier is a complex model
p(s|x), we aim at simpler models p(s|x, ¢q; {R}) ({R} rep-
resents the information about restaurants) that can discriminate
better only within the candidate dishes for a given query.

The proposed framework is shown in Fig. 4, adapted to the
scenario of dish recognition in restaurants. In particular, we use
restaurants as geographical anchors for candidate classes. We
first construct a database of restaurants including geographical
locations and menus. This information is obtained from restau-
rant review websites, which also include images of the corre-
sponding dishes. Only dishes with images are considered. Then,
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Fig. 4. Overview of the framework for dish recognition with geolocalized models.

using these images, we train geolocalized models for each dish
and store them. Each model is related to a particular geolocation.
During test time, the particular geolocation of the query de-
fines a neighborhood with some candidate restaurants. For each
query, the corresponding geolocalized models are selected and
combined into a new classifier adapted to the query. In the next
section we describe two strategies to implement this approach.
Note that the shortlist approach can also be considered a special
case, with a single global model adapted during query time.

IV. IMPLEMENTING GEOLOCALIZED MODELS

In this section we propose two strategies to implement ge-
olocalized modeling. The basic idea is to train dish models to
discriminate against the rest of the dishes in the menu and in
the menus of neighboring restaurants. Fig. 3(a) and (b) show
the geolocalized training neighborhood and classes using two
different restaurants data. An appropriate geolocalized training
and model combination at query time can closely approximate
the ideal case without the cost of retraining the classifier [com-
pare Fig. 3(c) and (d)]. However, the particular strategy to im-
plement geolocalized models has impact on the training and test
costs and on the scalability.

A. Geolocalized Strategy 1: Pairwise Models and
Geolocalized Voting

One way to implement multiclass classifiers (e.g. SVM) is
training multiple binary pairwise classifiers (also known as one-
against-one or OAO classifiers). Then, the input feature is clas-
sified by all of them, and the outputs of these classifers are com-
bined and the result is decided. A simple yet widely used method
is voting [27], where each binary classifier votes for either one of
the two classes it can discriminate. The predicted class is simply
the class with more votes.

We can observe that pairwise classifiers, in principle, do not
suffer from the problem of training with data from unrelated
classes as only the two classes involved are used for training. We
can easily obtain a geolocalized version just discarding the set of
classes out of the candidate set still keeps all the pairwise com-
binations of the candidate classes. Besides, each of these models

was trained only with data from the two classes involved, both
belonging to the candidate set. This is equivalent to re-training
the same OAO candidate-specific classifiers for each query, but
without actually performing any costly training procedure, just
selecting models. Thus, here the strategy consists of selecting
pairwise classifiers.

1) Classifier Selection and Combination: In our scenario (see
Fig. 5), a pairwise classifier fis1, : X — R discriminates
between the dish s € M, of restaurant k& and the dish p € M,
of restaurant [. In a geolocalized setting, for a set of candidate
restaurants H, we find the combinations of candidate classes as

C(H,) ={(k,s)|s € My, Vk € H,}. 3)
Then we adopt a voting strategy [27] to combine the results
of the binary classifiers. This is equivalent to the geolocalized
voting algorithm shown in Algorithm 1.

Algorithm 1 Geolocalized voting.

Input: Visual feature vector x, phone local coordinates ¢, and
pairwise classifiers models frs 1p(x)
Output: Predicted dish class s*
1: Find the set of candidate classes C'(H,) from ¢, using
(2) and (3)
2: for (k,s) € C(H,) do
3:  voteslk,s] = 0V(k,s)
4: end for
5: for (k,s) € C(H,) do

6 for (lvp) € C(Hq)7 (lvp) 7& (kv 5) do
7 lffks’lp(l‘) > 0 then

8 votes[k, s] = votes[k,s] + 1
9 else

10: votes[l,p] = votes[l,p] + 1
11: end if

12: end for

13: end for

14: Find (k*, s*) = arg max votes[k, 3]
(k,5)
15: return s*
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2) Geolocalized Training: Each binary classifier requires
much fewer training samples (from only two classes) than
one-against-all (OAA) classifiers, making training a particular
pairwise model very efficient. However, the number of pairwise
models is typically much larger, as they have to model all the
pairwise dish combinations. In particular, for K restaurants with
an average number of dishes D, there are KD(KD —1)/2
pairwise models. This is the main limitation of this framework,
in particular for a large number of restaurants and large menus,
as the pool of classifiers would require to train and store a large
number of models, with a significant impact on training cost
and memory requirements. Another drawback is that, during
test, all these pairwise classifiers must be evaluated for each
query image.

Fortunately, most of the pairwise models will never be used in
practice, as the geographic distance between most restaurants is
too large, so their dishes will never simultaneously be candidate
classes. Using this fact, we can design a sparse pool of classifiers
by considering only the pairwise relations between neighboring
restaurants as

L(v) = {frsip|llor —1ll <v,Vs € My
Vpe My, Vki=1,....K} (4)

where + is the radius of the training neighborhood. The predic-
tion would be obtained using Algorithm 1, but only considering
the models in £(+y). Fig. 6 illustrates how the parameter -y con-
trols the sparsity of the classifier pool. Note that if y is too small,
some pairwise combinations may be ignored, and some required
pairwise models would not be included in the pool. Assuming a
fixed ¢ for the radius of the candidate area, setting v > 2¢ guar-
antees that all the required pairwise models are included in the
pool (i.e. worst case scenario: two restaurants in the opposite
sides of the circumference of radius €).

Although this sparse pool of classifiers reduces significantly
the cost during training, in many cases (e.g. dense areas with
many restaurants, large menus) the number of classes may still
be large and a larger number (quadratic) of pairwise classifiers
need to be evaluated to classify a query image. This leads to a
significant time cost during test.

Sparse

] L

-
Rs Ms
R F
Non-
B sparse
M| E
R ‘ -
D

Fig. 6. Neighboring restaurants graph (left) and sparse pool of models (right).
A smaller radius « results in fewer pairwise combinations, making the pool
more sparse.

B. Geolocalized Strategy 2: Combination of Bundled
Classifiers (CBC)

We also investigate geolocalized one-against-all models,
which have the advantage that the number of binary classifiers
is linear with the number of classes.

1) Classifier Selection and Combination: We can design a ge-
olocalized version of OAA models by learning models locally
and then combining them depending on each query. In partic-
ular we use restaurants as local anchors, so each restaurant and
its dishes are linked to a particular geographic location. For a
particular restaurant k, we train a binary classifier for each dish
in its menu. All the dishes are treated as part of the same bundle
(i.e., the restaurant), that is why we refer to them as bundled
classifiers.

During test time, the classifier is adapted to the query de-
pending on the combination of models from neighboring restau-
rants as illustrated in Fig. 7(a). Here the strategy is to select
and combine bundles of classifiers (i.e., restaurants) based on
their geolocations. For a particular query with geolocation ¢,
the predicted dish is obtained as

*

s" = argmax py s (x) ©)

s€My ke H,
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Fig. 7.
p(s = Alk = 1, x) are represented as f1.4 and p1 .4, respectively.

where py, s (x) is the probability that x is of class s of restaurant
k and H, is the set of neighboring restaurants obtained from (2).

2) Geolocalized Training: Now we need to learn K geolo-
calized models py s(x), one per each bundle k. In the first ap-
proach, we can assume that bundles are independent and thus we
only need to train py, ¢ (x) to discriminate between classes in the
menu My, of restaurant k [see Fig. 7(b)]. For each class s € My,
we learn a binary classifier fx s(x). Typically, as in the case of
SVMs, multiclass classification is implemented by selecting the
class whose binary classifier has the maximum score. An im-
portant assumption is that the scores of the binary classifiers are
comparable. This is reasonable for each bundle of classifiers,
which has been trained with the same settings and with the same
classes and training samples.

However, during query time multiple bundles are combined.
Different bundles have different training settings and training
data, so the scores of their binary classifiers are not directly com-
parable. Thus, we convert the scores fj ;(x) to probabilities by
fitting a logistic function (still a binary function for a given &
and s)

1
1+ exp (Ak,sfk,s (X) + Bk,s)
=0 (_44k,sfk,s (X) - Bk,s)

Pk,s (X) —
(©)

where the parameters Ay , and By , are learned using Platt’s
scaling method [28], and () is the logistic function. The re-
sulting models py s (x) are stored in the pool of binary geolo-
calized models.

Discriminative classifiers trained only with classes in one
bundle cannot discriminate properly between classes in other
bundles. Thus, we propose including also neighboring restau-
rants when training geolocalized models [see Fig. 8(a)]. For the
bundle %, the training set of neighboring bundles H}, is obtained
as

Hy = H (pr,7) ={ll|or — @il <vVi=1,....,K}. (7)

An OAA classifier is learned for all the classes in Hy (e.g.,
ten classes in Fig. 7), and Platt’s scaling is also performed in-
cluding neighboring classes and data. Note that neighboring
restaurants are used to increase the discriminative capability, but

Classification using bundled classifiers: (a) classifier selection and combination, and (b) geolocalized training of a bundle. Notation: f1,4(x) and

\
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Fig. 8. Geolocalized training of a bundle of classifiers with neighboring bun-
dles: (a) each neighboring class independently, (b) all neighboring classes to-
gether in a joint rejection model. Notation: f1,4(x), p(s = Alk = 1,x) and
f1,s¢ a1, (x) are represented as f1.4, p1a and f-i, respectively.

only the classifiers in the related bundle are kept. Classifiers for
other neighboring restaurants are obtained by geolocalizing the
training on their coordinates.
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TABLE 1
COMPARISON OF STRATEGIES FOR GEOLOCALIZED CLASSIFICATION. COST IS FOR THE CASE OF SVM CLASSIFIERS

} . .. Number of Training cost per Training cost of adding a new .
Approach ...selects/discards... Classifiers classifiers classifier Dish Restaurant Test cost per image
Global - OAA O (KD O (KDN O (KD?>N) O (KD?N O (KD)
Shortlist classes OAA O (KD O (KDN O (KD?*N O (KD?N O (eD)
Geovl(())!ciilglzed pairwise classifiers OAO O (cKD?) O (N) O (cDN) O (cD2N) O (e2D?)
CBC bundled classifiers OAA ] (KB) (@] (CDN) ] (CDZN) o (CD2N) ] (eD)
We found that this slightly different way to train geolocalized TABLE II
classifiers is important, increasing the accuracy significantly. OVERALL STATISTICS OF THE DATASET (6 CITIES)
The reason is not only the increased capability to discriminate . Fimages
between inter-bundle classes, but also a better calibration of the Cities Arestaurants | oo oer restaurant | total  per dish
probabilities py s(x) across bundles. The overlap of different gome o b o T e
.. . ’ e anghai . .
training neighborhoods also helps probabilities pj ;(x) from Tianjin 78 435 5.58 10811 24.85
different bundles to be more comparable in (5). Although this Hliﬁgl?gu 2‘2‘ g;? gég ;?gi gjg’;
calibration is not exact, in practice this method achieves good Guangzhou 57 272 477 6543 24.06

performance for a reasonable ~.

One drawback of including neighboring restaurants is that the
number of classifiers to be trained also increases significantly.
Although they are not used during query time, the additional
classifiers need to be trained, increasing the overall training time
with the CBC approach. We found that in practice it is not neces-
sary to train one model for each additional neighboring class, but
training a single model combining them [see Fig. 8(b)] is much
faster and also achieves better accuracy. In the experiments, we
verify this hypothesis empirically. This additional model can be
seen as a rejection model fi o¢17, (x), related with the proba-
bility that the dish comes from a neighboring restaurant rather
than from the restaurant % itself.

This framework has an acceptable scalability for both restau-
rants and dishes. If a new restaurant is included in the database it
only requires to train a new geolocalized model, and (optionally)
retraining the models of its neighbors. In the case of a new dish
in the menu, it would require to retrain all the dish models in the
menu but only with images from that restaurant and its neigh-
bors. In addition, since fewer models are selected, this scheme
is very discriminative for dishes within the same restaurant, and
also discriminative for dishes across neighboring restaurants,
while simultaneously keeping a low time cost compared with
geolocalized pairwise models.

C. Efficiency and Scalability

Another important aspect of the geolocalized modeling
framework for practical applications is the complexity.
Table I compares the complexity of the different approaches
for both training and test stages. We include non-geolocalized
models (global) as reference. An important difference between
the different methods is how they implement multiclass classi-
fication. We typically need more pairwise models, but each of
them is trained faster, as it uses fewer training samples.

The training cost is critical to address large scale problems.
In general, the total cost of training both global and pairwise
classifiers is O(K*D?N), where D is the average number of
dishes per restaurant and /V the number of training images per
dish. When the models are geolocalized (i.e. geolocalized voting
and CBC), we only train ¢ nearest restaurants (¢ is indirectly
related with «) instead of K, which reduces the training cost
significantly.

Another practical problem is scalability, i.e., how to update
the dish models when the restaurant database is updated with
new dishes or restaurants. In principle, global would require
retraining again all the models in the database. Similarly, CBC
requires training a new model for the particular restaurant, or
retraining when a new dish is added. This is significantly faster
than global. In this sense, geolocalized pairwise models are
more suitable, as they only would need to retrain a smaller
subset related with the new dishes, and can reuse all the models
already available.

However, the most critical difference between geolocalized
voting and CBC is related with the testing stage. Pairwise
models have a quadratic dependency on D and the average
number of candidate restaurants e (indirectly related with ¢),
while the number of models in OAA classifiers grows linearly.
This makes CBC more suitable when the number of classes is
large and when a low classification delay is required.

V. EXPERIMENTS

A) Dish Images in Restaurants Dataset: Although some food
datasets are available, none of them is restaurant-centric, and
thus they do not include neither geolocation nor menu infor-
mation. For this reason we collected our own data to evaluate
the proposed methods in the dish recognition in restaurants sce-
nario. We gathered data about restaurants in six cities from an
online restaurant directory and review site.! For simplicity, we
focus on the data collected from Beijing to illustrate the struc-
ture of our dataset and provide more details.

Each restaurant in our dataset includes its location, the list of
dishes (i.e., menu) and a number of photos of each dish. We dis-
carded restaurants with less than 3 dishes in the menu and fewer
than 15 images per dish. Table II shows the overall statistics of
the datasets.? For instance, focusing on the Beijing dataset, it
contains 187 restaurants with a combined 1173 dish classes (701
unique dish classes). Fig. 9 shows some examples of restaurants
and dishes in that dataset, illustrating the hierarchical organiza-
tion of the images. The number of dishes per restaurant and im-

[Online]. Available: http://www.dianping.com
2[Online]. Available: http://vipl.ict.ac.cn/isia/datasets_dish/index.html
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Songzi Japanese restaurant
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Fig. 9. Examples of restaurants and dish photos in the dataset (Beijing). Each restaurant has a menu and a geolocation, and each item in the menu has several

images.
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Fig. 10. Characteristics of the dataset (Beijing): (a) number of dish classes per
restaurant and (b) number of images per dish class.
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Fig. 11. Geographic distribution of the restaurants included in the experiments
(Beijing).

ages per dish vary significantly across the dataset (see Fig. 10).
The geographical distribution of the restaurants in Beijing is
shown in Fig. 11.

A. Experimental Settings

Features. Images are represented using the deep convo-
lutional activation feature (DeCAF) proposed in [29]. Deep
models have recently been applied to large-scale visual recog-
nition tasks, including food recognition [30]. In our case we
have very few images per class to train the deep model, case
in which fully-supervised deep architectures tend to overfit
dramatically [29]. In order to avoid overfitting, we just rely on
deep features learned from a large object recognition dataset

+ Query geolocation
* Query geolocation (with noise)

Fig. 12. Example of geographical data used in the experiments, including sev-
eral restaurants and the simulated query geolocations (cLoc = 50 meters,
€ = 200 meters).

(i.e. ImageNet). In this way, DeCAF features can be learned
to have sufficient representational power and generalization
ability to be applied to new tasks which have too few training
examples. Using the same network as in [29] we extract a
40960 dimensional features.

Geolocation information. We use the coordinates of the
restaurants obtained from a web map service. As test data is
collected in the same way, we lack more specific geolocation
for the dish images other than the same coordinates of the
restaurant. In this case, restaurants are modeled as points,
neglecting their actual spatial extension (dish photos could be
taken at any particular location within the restaurant). A simple
yet more realistic model to evaluate the proposed methods is
considering restaurants as square blocks (in our case we use
L x L = 20 x 20 square meters). In addition we model the
error of the mobile location service as isotropic Gaussian noise
with ¢ = b0 meters to obtain the simulated query geolocation.
Thus we simulate the location of a test image as

(u7 1)) =

where (ug,vgr) are the coordinates of the restaurant, ng;
and ngyy are sampled randomly from a uniform distribu-
tion 4(—1,1) and (ng1,ng2) from a bidimensional normal
distribution N(0,0%,,I). An example of simulated query
geolocations is shown in Fig. 12, where different restaurants
and their corresponding queries are shown in different colors.
Note that (unknown) true geolocations lie within the boundaries
of the restaurant, while the estimation given by the smartphone
is much more scattered due to the noise.

(ur+L/2xnyi+nroct, vrR+L/2 X nyz+nroca)
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Fig. 13. Accuracy and training time for different training radius y: (a) accuracy
and (b) training time.

Binary classifiers. We implemented the proposed approach
for the particular case of SVM classifiers. We used the Liblinear
library [31], considering its efficiency for high dimensional fea-
tures. We randomly split the dataset selecting 10 images per dish
class for training, and another 10 for testing (if not enough, the
remaining images in the class, with a minimum of 5 images).

Dish models. We evaluated the three geolocalized methods
described in the paper: shortlist, geolocalized voting and CBC.
For the last two methods we use v = 400 meters for the training
neighborhood.

Baselines. We also compared with the global classifier
ignoring geolocation (global), and with a simple yet represen-
tative retrieval-based method (geolocalized kNN). The latter
first finds the training images in the geographic neighborhood
of the query and then uses k-NN in the feature space. In
Section V-C3 we evaluate this method over SIFT features
encoded with a vocabulary tree [32], which is a widely used for
landmark recognition.

A) Recognition Accuracy:. Inthis section we first focus on the
Beijing dataset for more detailed evaluation. In a later section
we compare the performance over the datasets collected from
other cities.

1) Training Radius: We first evaluate the impact of the
training radius v over the accuracy and efficiency, for a fixed
e = 150 meters. A value of v = 0 corresponds to training
classifiers to discriminate only between the dishes in the menu.
We see that in this case for both geolocalized voting and CBC
the accuracy is not optimal [see Fig. 13(a)]. The accuracy
increases as the training radius increases and includes neigh-
boring restaurants. On the other hand, the more restaurants
we include, the more classifiers that need to be trained, so the
training time also increases [see Fig. 13(b)].

For CBC, we also compared the two variants to include
classes from neighboring restaurants (see Fig. 8): all classes
independently, and a joint rejection model. We observed that
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Fig. 15. Accuracy for different search radius e: (a) LLC and (b) DeCAF.

TABLE III
ACCURACY (%) FOR DIFFERENT FEATURES

Geolocalized kNN

Feature Dim Global k=11 k=21 Shortlist ~ Geolocalized voting ~ CBC
SIFT 1LIK  7.28 17.17 20.11 38.59 44.64 45.13
KDES 42K 16.78 17.36 17.39 4830 51.42 54.29
LLC 215K 21.72 44.36 40.78 5345 59.88 60.92
FishVec  65.5K  26.41 47.12 44.46 56.79 65.41 65.44
DeCAF 41K 4835 21.25 18.82 76.51 79.74 80.05

both accuracy and training time are better when training a joint
rejection model instead of many independent ones. For that
reason we use this approach for the rest of the experiments.

2) Search Radius: The performance of the proposed system
(both accuracy and efficiency) greatly depends on the number
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TABLE IV
EXAMPLES OF LABELS PREDICTED BY THE DIFFERENT STRATEGIES. CORRECT PREDICTIONS ARE SHOWN IN BOLDFACE

N

e

Ground truth

Pot Stewed Beef

Kanokwan Fried Crab

BBQ Pork

Seafood Dumpling

Cream Caramel

Geolocalized

ENN Honey Cake Rice With Pineapple Tofu With Pork Ribs Three Delicacies Dumpling Milk Tea
Global Gross blood Mong Crab Tofu Gross blood Mong Assorted Dumpling Mango Pudding
Shortlist Borsch Rice With Pineapple Gross blood Mong Assorted Dumpling Milk Tea
Ge(z]l(c))tciilgized Borsch Kanokwan Fried Crab BBQ Pork Seafood Dumpling Cream Caramel
CBC Pot Stewed Beef Kanokwan Fried Crab BBQ Pork Seafood Dumpling Cream Caramel
TABLE V

COMPLEXITY AND TIME COSTS FOR THE DIFFERENT MODELS

Method #models  #SVs /model  Training time (min) Test time/image (s)
v = 400 v = 400 vy=0 =400 €=50,7=400 €= 150,y =400
Geolocalized kNN (k = 11) - - - - 0.2738 0.9273
Global 701 132.82 154.51 1.6285
Shortlist 701 132.82 154.51 0.0435 0.0951
Geolocalized voting 15251 16.00 22.36 93.07 0.1508 0.6620
CBC 1314 60.41 11.34 41.73 0.0350 0.0869

Experiments performed in an AMD Optero 3.1 GHz with a memory of 48 GB (using one core).

of candidate restaurants found in the geographical neighbor-
hood, which in practice depends on many factors. An impor-
tant parameter is the search radius €. A low value can ignore
the right restaurant, while a too large value can increase the
computational cost and reduce the effectivity of geolocalized
models. Fig. 14(a) compares the histograms of candidate restau-
rants found in the search neighborhood. Bars of different colors
correspond to different values of e. The most frequent case is
finding only one candidate, and cases with more than five restau-
rants are very rare. However, a small value of ¢, such as 50
meters, results in not finding any candidate restaurant (due to
the noise added in our geolocation model) in more than 45% of
the times, which will degrade the performance significantly. In
most cases, even few restaurants can lead to several tens of dish
classes, as shown in Fig. 14(b).

Closely related with the number of candidate restaurants, the
accuracy in this case follows a similar trend with ¢ (see Fig. 15).
We can notice that if that radius is too small (e.g. 50 meters),
the accuracy drops due to the lack of candidate restaurants. In
the following experiments, we empirically set ¢ = 150 me-
ters which is a reasonable value for good performance and good
efficiency.

3) Features: In addition to deep features, here we also
evaluate the proposed geolocalized models for other four types
of features. We include three BoW representations: kernel
descriptors [33], locality-constrained linear coding (LLC) [34]
and Fisher vectors [35], encoded with a dictionary of 10 K
words. We also include SIFT descriptors combined with a
vocabulary tree for faster retrieval of local features.

The results are shown in Table III (and in Fig. 15 for LLC
and DeCAF). It can be observed that geolocation contributes
significantly to the recognition performance, since considering
geolocation improves the accuracy of global models by roughly
30%. Among the evaluated features, geolocalized kNN has
worse performance than shortlist, while still performing better
than global models not considering geolocation. However, this

does not hold for DeCAF, where the accuracy drops showing
that kNN in high dimensional spaces can degrade its perfor-
mance if the metric is not suitable. However, learning metrics
in such high dimensional spaces is complex and very costly. In
contrast, DeCAF is very powerful when used with SVM, case
in which even a global classifier has better performance than
geolocalized ENN. This also suggests that, in contrast to land-
mark recognition, discriminative classification may be more
suitable for food recognition than retrieval-based classification.

The proposed two approaches have similar performance,
consistently improving the accuracy. The best performing fea-
ture is DeCAF with CBC, with an absolute gain over shortlist
of 3.5%. The other features benefit more from geolocalized
models, with larger absolute gains in accuracy around 5-8%,
with CBC having slightly better performance than geolocalized
voting.

Table IV shows some examples of difficult dish images
classified using the proposed methods. In general we observe
that global models and geolocalized kNN cannot detect the
exact label, although sometimes predict similar categories (e.g.
dumplings). However, geolocalized voting and CBC can find
the exact categories.

B. Computational Cost

We also evaluated the training and test cost of the different
models, and the results are summarized in Table V. A first
observation is that the number of support vectors per model
in global and shortlist is much higher than the geolocalized
models, leading to overcomplex models in geolocalized queries.
Global models are very slow to train, while the proposed two
models are much faster.

The key difference between geolocalized voting and CBC is
related with the test stage, and in particular to the way multi-
class classification is implemented. The OAA classifiers in CBC
require very little time during test, and are faster than global
models, and geolocalized kNN. In contrast, geolocalized voting
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Fig. 16. Evaluation in data from different cities (DeCAF): (a) average accuracy
and (b) test time per query.

is significantly slower due to a much larger number of pairwise
models required to evaluate for each query image. This makes
CBC more suitable than geolocalized voting when low latency
is required and computational resources are limited.

C. Other Cities

Fig. 16 shows the performance of our models on the datasets
of the 6 cities, using DeCAF as feature. In all the cases the
two proposed geolocalized models outperform global, shortlist
and geolocalized kN N . This also shows their effectivity with
datasets of different sizes (see Table IT). We can also observe that
for larger datasets (e.g. Beijing, Shanghai) the gain due to ge-
olocalized classification is larger. In those cases, the number of
candidate classes for a query is smaller compared with the total
number of classes, and the benefit of geolocalizing the models
is higher. Note that future larger datasets (with more restau-
rants and more dish classes) will benefit more from this effect.
The test time for each query image is also shown in Fig. 16(b).
In general, CBC shows a very promising performance, while
keeping the complexity low.

VI. CONCLUSION

Unrestricted dish recognition is a very challenging problem,
and addressing the problem only considering visual information
is very hard, even for humans. In general, but particularly in this
domain, contextual information can significantly improve per-
formance over visual-only approaches. By exploiting geoloca-
tion and user-contributed information about restaurants, we can
effectively simplify the problem from thousands to tens of can-
didate classes. In contrast to most approaches using geolocation
for image recognition, we do not use retrieval techniques but
explicit discriminative classification. However, we also showed
that a naive implementation of this idea (i.e. shortlist) is not op-
timal due to the mismatch between test and training settings,
leading to limitations in both accuracy and efficiency. We an-
alyzed the problem and proposed geolocalized classification to
address these limitations. Thus we can achieve better recogni-
tion and faster training and prediction, in particular with the pro-
posed CBC strategy.

In this work we focused on close-up photos of dishes. Fu-
ture work will consider photos with multiple dishes and larger

IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 17, NO. 8, AUGUST 2015

datasets including data from more countries and a wider range
of cuisines.
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