The following files are provided:
|-CACLNet |---datasets |---dataset.py |---losses |---CAAL.py |---models |---pretrained |---resnet50-19c8e357.pth |---resnet101-5d3b4d8f.pth |---networks |---coord_predict.py |---icl_module.py |---model_twobranch_CL.py |---resnet.py |---utils |---apmeter.py |---auto_load_resume.py |---calcoord.py |---eval_model.py |---read_dataset.py |---train_model.py |---config.py |---train.py
To download all files as a zip package, click here.
Firstly, you need to change the default config in config.py
setting = 'food172' # for Vireo Food-172
setting = 'UECFOOD100' # for UEC Food-100
Secondly, you can run with:
CUDA_VISIBLE_DEVICES=0,1 python train.py
Due to copyright issues, please go to the official website to download the dataset.
If you would like to use our paper, please cite it:
@ARTICLE{10268369, author={Luo, Mengjiang and Min, Weiqing and Wang, Zhiling and Song, Jiajun and Jiang, Shuqiang}, journal={IEEE Transactions on Image Processing}, title={Ingredient Prediction via Context Learning Network With Class-Adaptive Asymmetric Loss}, year={2023}, volume={32}, number={}, pages={5509-5523}, doi={10.1109/TIP.2023.3318958} }