The following files are provided:
|-CACLNet
|---datasets
|---dataset.py
|---losses
|---CAAL.py
|---models
|---pretrained
|---resnet50-19c8e357.pth
|---resnet101-5d3b4d8f.pth
|---networks
|---coord_predict.py
|---icl_module.py
|---model_twobranch_CL.py
|---resnet.py
|---utils
|---apmeter.py
|---auto_load_resume.py
|---calcoord.py
|---eval_model.py
|---read_dataset.py
|---train_model.py
|---config.py
|---train.py
To download all files as a zip package, click here.
Firstly, you need to change the default config in config.py
setting = 'food172' # for Vireo Food-172
setting = 'UECFOOD100' # for UEC Food-100
Secondly, you can run with:
CUDA_VISIBLE_DEVICES=0,1 python train.py
Due to copyright issues, please go to the official website to download the dataset.
If you would like to use our paper, please cite it:
@ARTICLE{10268369,
author={Luo, Mengjiang and Min, Weiqing and Wang, Zhiling and Song, Jiajun and Jiang, Shuqiang},
journal={IEEE Transactions on Image Processing},
title={Ingredient Prediction via Context Learning Network With Class-Adaptive Asymmetric Loss},
year={2023},
volume={32},
number={},
pages={5509-5523},
doi={10.1109/TIP.2023.3318958}
}